A path integral formula with applications to quantum random walks in

نویسندگان

  • Wei-Shih Yang
  • Chaobin Liu
  • Kai Zhang
چکیده

We consider general quantum random walks in a d-dimensional half-space. We first obtain a path integral formula for general quantum random walks in a d-dimensional space. Our path integral formula is valid for general quantum random walks on Cayley graphs as well. Then the path integral formula is applied to obtain the scaling limit of the exit distribution, the expectation of exit time and the asymptotic behaviour of the exit probabilities, for general quantum random walks in a half-space under some conditions on amplitude functions. The conditions are shown to be satisfied by both the Hadamard and Grover quantum random walks in two-dimensional half-spaces. For the two-dimensional case, we show that the critical exponent for the scaling limit of the hitting distribution is 1 as the lattice spacing tends to zero, i.e. the natural magnitude of the hitting position is of order O(1) if the lattice spacing is set to be 1/n. We also show that the rate of convergence of the total hitting probability has lower bound n−2 and upper bound n−2+ for any > 0. For a quantum random walk with a fixed starting point, we show that the probability of hitting times at the hyperplane decays faster than that of the classical random walk. In both one and two dimensions, given the event of a hit, the conditional expectation of hitting times is finite, in contrast to being infinite for the classical case. In the one-dimensional case, we also obtain an exact order of the probability distribution of the hitting time at 0. PACS numbers: 02.50.Cw, 03.67.Lx, 05.40.Fb

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Path Integral Approach for Disordered Quantum Walks in One Dimension

The present letter gives a rigorous way from quantum to classical random walks by introducing an independent random fluctuation and then taking expectations based on a path integral approach.

متن کامل

From Quantum to Classical Random Walks

The present paper gives a rigorous way from quantum to classical for quantum walks by introducing an independent random fluctuation and then taking expectations based on a path integral approach.

متن کامل

Absorption Problems for Quantum Random Walks in One Dimension

This paper treats absorption problems for the one-dimensional quantum random walk determined by a 2× 2 unitary matrix U on a state space {0, 1, . . . ,N} where N is finite or infinite by using a new path integral approach based on an orthonormal basis P,Q,R and S of the vector space of complex 2× 2 matrices. Our method studied here is a natural extension of the approach in the classical random ...

متن کامل

Fractional Quantum Field Theory, Path Integral, and Stochastic Differential Equation for Strongly Interacting Many-Particle Systems

While free and weakly interacting particles are well described by a second-quantized nonlinear Schrödinger field, or relativistic versions of it, with various approximations, the fields of strongly interacting particles are governed by effective actions, whose quadratic terms are extremized by fractional wave equations. Their particle orbits perform universal Lévy walks rather than Gaussian ran...

متن کامل

Random Walks in Cones

We study the asymptotic behaviour of a multidimensional random walk in a general cone. We find the tail asymptotics for the exit time and prove integral and local limit theorems for a random walk conditioned to stay in a cone. The main step in the proof consists in constructing a positive harmonic function for our random walk under minimal moment restrictions on the increments. For the proof of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007